An active foamy virus integrase is required for virus replication.
نویسندگان
چکیده
Foamy viruses (FVs) make use of a replication strategy which is unique among retroviruses and shows analogies to hepadnaviruses. The presence of an integrase (IN) and obligate provirus integration distinguish retroviruses from hepadnaviruses. To clarify whether a functional IN is required for FV replication, a mutant in the highly conserved DD35E motif of the active centre was analysed. This mutant was found to be able to express Gag and Pol protein precursors and cleavage products and to generate and deliver cDNA. However, this mutant was replication-deficient. The junctions of individual foamy proviruses with cellular DNA were sequenced. The findings suggest that FV integration is asymmetrical, because the proviruses started with what is believed to be the U3 end of the free linear DNA to generate the conventional TG dinucleotide, while apparently two nucleotides from the U5 end were cleaved to create the complementary CA dinucleotide. Alignment of known FV genome sequences indicated that this mechanism of integration is not restricted to the two FV isolates from which integrates were studied, but appears to be a common feature of this retrovirus subfamily. In conclusion, with respect to the necessity of a functionally active IN for virus replication FVs behave like other retroviruses; their mechanism of integration, however, is probably unique.
منابع مشابه
Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells.
Foamy viruses are complex retroviruses whose replication strategy resembles that of conventional retroviruses. However, foamy virus replication also resembles that of hepadnaviruses in many respects. Because hepadnaviruses replicate in an integrase-independent manner, we were interested in investigating the characteristics of human foamy virus (HFV) integration. We have shown that HFV requires ...
متن کاملFoamy Virus Assembly with Emphasis on Pol Encapsidation
Foamy viruses (FVs) differ from all other genera of retroviruses (orthoretroviruses) in many aspects of viral replication. In this review, we discuss FV assembly, with special emphasis on Pol incorporation. FV assembly takes place intracellularly, near the pericentriolar region, at a site similar to that used by betaretroviruses. The regions of Gag, Pol and genomic RNA required for viral assemb...
متن کاملRelative Comparison of Catalytic Characteristics of Human Foamy Virus and HIV-1 Integrases
Due to their ability to integrate into the host cell's genome, retroviruses represent an optimal basis for the creation of gene therapy vectors. The integration reaction is carried out by a viral enzyme integrase: thus, a detailed research of this enzyme is required. In this work, the catalytic properties of human foamy virus integrase were studied. This virus belongs to the Retroviridae family...
متن کاملFunctional and structural characterization of the integrase from the prototype foamy virus
Establishment of the stable provirus is an essential step in retroviral replication, orchestrated by integrase (IN), a virus-derived enzyme. Until now, available structural information was limited to the INs of human immunodeficiency virus type 1 (HIV-1), avian sarcoma virus (ASV) and their close orthologs from the Lentivirus and Alpharetrovirus genera. Here, we characterized the in vitro activ...
متن کاملComparison of Newly Assembled Full Length HIV-1 Integrase With Prototype Foamy Virus Integrase: Structure-Function Prospective
BACKGROUND Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of general virology
دوره 80 ( Pt 6) شماره
صفحات -
تاریخ انتشار 1999